สมัครเรียนโทร. 085-350-7540 , 084-88-00-255 , ntprintf@gmail.com

AI / Machine Learning

The brief history of artificial intelligence - ประวัติศาสตร์ AI ฉบับย่อ Jupyter Notebook on AWS Pandas Tutorials ตรวจจับตำแหน่งของมือจากกล้องเว็บแคมแบบเรียลไทม์ด้วย Python ง่าย ๆ ใน 2 นาที ตรวจจับวัตถุด้วย Python ใน 5 Steps ใช้ AI แบ่งส่วนภาพคนกับฉากหลังแบบง่าย ๆ แป๊บเดียวเสร็จ ใช้ AI บอกท่าทางคนด้วย Code เพียง 15 บรรทัด สร้างแอนิเมชันจากตัวการ์ตูนที่เราวาดเองด้วย Code 2 บรรทัด สร้างไฟล์ท่าเต้นสุดคิวท์ให้ตัวการ์ตูนเต้นตามใน 1 คำสั่ง Artificial Intelligence (AI) Machine Learning 8 Fun Machine Learning ProjectsFor Beginner การหาค่าเหมาะที่สุด (Optimization) Mathematical Optimization Top 20 Python Machine Learning Open Source Projects Introduction to Neural Networks Introduction to Deep Learning with TensorFlow Installing TensorFlow for Deep Learning - OPTIONAL Deep Learning with TensorFlow - Creating the Neural Network Model Deep Learning with TensorFlow - How the Network will run พื้นฐาน TensorFlow - TensorFlow คืออะไร พื้นฐาน TensorFlow - การติดตั้ง TensorFlow บน Windows, macOS, และ Linux พื้นฐาน TensorFlow - การติดตั้ง TensorFlow สำหรับ GPU พื้นฐาน TensorFlow - การติดตั้ง TensorFlow บน Google Colab พื้นฐาน TensorFlow - ความเข้าใจพื้นฐานเกี่ยวกับ Tensor (Tensor คืออะไร) พื้นฐาน TensorFlow - การใช้ tf.constant() เพื่อสร้าง Tensor พื้นฐาน TensorFlow - การใช้ tf.Variable() เพื่อสร้างตัวแปร พื้นฐาน TensorFlow - การเปลี่ยนแปลงค่าของ Tensor พื้นฐาน TensorFlow - การทำงานกับ Operations ใน TensorFlow พื้นฐาน TensorFlow - การใช้ tf.add(), tf.subtract(), tf.multiply() TensorFlow การจัดการกับ Tensors - การเปลี่ยนรูปทรงของ Tensor ด้วย tf.reshape() TensorFlow การจัดการกับ Tensors - การเปลี่ยนชนิดข้อมูลของ Tensor ด้วย tf.cast() TensorFlow การจัดการกับ Tensors - การตัดแบ่งและรวม Tensor ด้วย tf.split() และ tf.concat() TensorFlow การจัดการกับ Tensors - การสร้าง Tensors แบบสุ่มด้วย tf.random() TensorFlow การจัดการกับ Tensors - การใช้งาน Broadcasting ใน TensorFlow TensorFlow การจัดการกับ Tensors - การคำนวณค่าเฉลี่ยและผลรวมของ Tensor TensorFlow การจัดการกับ Tensors - การหาค่าสูงสุดและต่ำสุดใน Tensor TensorFlow การจัดการกับ Tensors - การสร้าง Identity Matrix ด้วย tf.eye() TensorFlow การจัดการกับ Tensors - การหา Trace ของ Matrix TensorFlow การจัดการกับ Tensors - การคำนวณ Determinant ของ Matrix TensorFlow การทำงานกับกราฟ - การสร้าง Computational Graph TensorFlow การทำงานกับกราฟ - การใช้ Autograph ใน TensorFlow TensorFlow การทำงานกับกราฟ - การใช้ tf.function เพื่อเร่งความเร็วการทำงาน TensorFlow การทำงานกับกราฟ - การตรวจสอบ Graph ด้วย tf.summary TensorFlow การทำงานกับกราฟ - การใช้ TensorBoard เพื่อแสดงผล Graph TensorFlow การทำงานกับกราฟ - การทำงานกับ Control Flow (เช่น tf.while_loop, tf.cond) TensorFlow การทำงานกับกราฟ - การสร้าง Custom Operations TensorFlow การทำงานกับกราฟ - การใช้ Gradient Tape เพื่อคำนวณอนุพันธ์ TensorFlow การทำงานกับกราฟ - การทำ Automatic Differentiation TensorFlow การทำงานกับกราฟ - การใช้งาน Gradient Descent Optimizer TensorFlow การสร้างและจัดการโมเดล - การใช้ Sequential API ในการสร้างโมเดล TensorFlow การสร้างและจัดการโมเดล - การสร้างโมเดลด้วย Functional API TensorFlow การสร้างและจัดการโมเดล - การสร้าง Custom Layers ใน TensorFlow TensorFlow การสร้างและจัดการโมเดล - การสร้างและฝึกโมเดลด้วย Model.fit() TensorFlow การสร้างและจัดการโมเดล - การปรับแต่งโมเดลด้วย Model.compile() TensorFlow การสร้างและจัดการโมเดล - การใช้ Loss Functions เช่น MeanSquaredError, CategoricalCrossentropy TensorFlow การสร้างและจัดการโมเดล - การใช้งาน Optimizers เช่น Adam, SGD TensorFlow การสร้างและจัดการโมเดล - การทำ Regularization ในโมเดล (L1, L2) TensorFlow การสร้างและจัดการโมเดล - การสร้างโมเดลด้วย Keras API ใน TensorFlow TensorFlow การสร้างและจัดการโมเดล - การบันทึกและโหลดโมเดลที่ฝึกแล้วด้วย Model.save() และ Model.load_model() TensorFlow การทำงานกับข้อมูล - การโหลดข้อมูลจาก CSV ด้วย tf.data.Dataset TensorFlow การทำงานกับข้อมูล - การใช้ tf.data.Dataset.from_tensor_slices() เพื่อสร้าง Dataset TensorFlow การทำงานกับข้อมูล - การปรับขนาดและแปลงรูปภาพใน Dataset TensorFlow การทำงานกับข้อมูล - การทำงานกับ Batch Data ด้วย Dataset.batch() TensorFlow การทำงานกับข้อมูล - การใช้ Dataset.map() เพื่อแปลงข้อมูล TensorFlow การทำงานกับข้อมูล - การทำ Shuffling ข้อมูลด้วย Dataset.shuffle() TensorFlow การทำงานกับข้อมูล - การโหลดข้อมูลจาก TFRecord Files TensorFlow การทำงานกับข้อมูล - การเขียนข้อมูลเป็น TFRecord Files TensorFlow การทำงานกับข้อมูล - การทำ Prefetching ข้อมูลเพื่อเพิ่มความเร็ว TensorFlow การทำงานกับข้อมูล - การทำงานกับ Sequence Data ใน TensorFlow TensorFlow การประมวลผลภาพ - การใช้ TensorFlow กับชุดข้อมูล MNIST TensorFlow การประมวลผลภาพ - การโหลดและแสดงรูปภาพด้วย TensorFlow TensorFlow การประมวลผลภาพ - การทำงานกับ tf.image สำหรับการจัดการรูปภาพ TensorFlow การประมวลผลภาพ - การทำการเปลี่ยนขนาดรูปภาพ (Resizing) TensorFlow การประมวลผลภาพ - การทำการหมุนและสะท้อนรูปภาพ TensorFlow การประมวลผลภาพ - การทำ Image Augmentation TensorFlow การประมวลผลภาพ - การทำ Normalization ของภาพ TensorFlow การประมวลผลภาพ - การทำการปรับแต่งข้อมูลสำหรับการฝึกโมเดล (Data Preprocessing) TensorFlow การประมวลผลภาพ - การทำการจัดแบ่งข้อมูลเป็น Training และ Testing Sets TensorFlow การประมวลผลภาพ - การใช้ ImageDataGenerator ในการจัดการข้อมูลภาพ TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การสร้าง Convolutional Neural Network (CNN) TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การใช้งาน Convolution Layers TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การใช้ Max Pooling และ Average Pooling TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การใช้ Dropout เพื่อป้องกัน Overfitting TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การสร้างโมเดล CNN สำหรับการรู้จำภาพ TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การใช้ Transfer Learning ด้วยโมเดลที่ถูกฝึกมาแล้ว (Pre-trained Models) TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การใช้งานโมเดลเช่น VGG16, ResNet, Inception TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การประยุกต์ใช้ Fine-Tuning ในโมเดล Pre-trained TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การทำการทำนายภาพด้วยโมเดลที่ถูกฝึก TensorFlow การสร้างโมเดลการรู้จำภาพ (Image Classification) - การประเมินผลการทำนายด้วย Accuracy และ Confusion Matrix TensorFlow การทำงานกับ Sequential Data และ Time Series - การสร้าง Recurrent Neural Network (RNN) TensorFlow การทำงานกับ Sequential Data และ Time Series - การใช้งาน Simple RNN Layers TensorFlow การทำงานกับ Sequential Data และ Time Series - การใช้งาน Long Short-Term Memory (LSTM) TensorFlow การทำงานกับ Sequential Data และ Time Series - การใช้งาน Gated Recurrent Unit (GRU) TensorFlow การทำงานกับ Sequential Data และ Time Series - การสร้างโมเดลเพื่อทำนาย Time Series TensorFlow การทำงานกับ Sequential Data และ Time Series - การจัดการกับ Sequence Padding TensorFlow การทำงานกับ Sequential Data และ Time Series - การทำงานกับ Variable Length Sequences TensorFlow การทำงานกับ Sequential Data และ Time Series - การใช้ Attention Mechanism ใน Time Series TensorFlow การทำงานกับ Sequential Data และ Time Series - การสร้างและฝึก Transformer Networks TensorFlow การทำงานกับ Sequential Data และ Time Series - การประยุกต์ใช้โมเดล RNN/LSTM ในการสร้าง Text Generation TensorFlow การประมวลผลข้อความ (Text Processing) - การทำงานกับข้อความใน TensorFlow TensorFlow การประมวลผลข้อความ (Text Processing) - การใช้ Tokenization เพื่อแปลงข้อความเป็นตัวเลข TensorFlow การประมวลผลข้อความ (Text Processing) - การสร้าง Embeddings ด้วย tf.keras.layers.Embedding TensorFlow การประมวลผลข้อความ (Text Processing) - การใช้ Word2Vec ใน TensorFlow TensorFlow การประมวลผลข้อความ (Text Processing) - การทำการรู้จำความหมายในประโยคด้วย Sentiment Analysis TensorFlow การประมวลผลข้อความ (Text Processing) - การสร้างโมเดลสำหรับการจำแนกข้อความ TensorFlow การประมวลผลข้อความ (Text Processing) - การทำ Sequence to Sequence Learning TensorFlow การประมวลผลข้อความ (Text Processing) - การใช้ Attention Mechanism ใน NLP TensorFlow การประมวลผลข้อความ (Text Processing) - การสร้างโมเดลสำหรับ Machine Translation TensorFlow การประมวลผลข้อความ (Text Processing) - การใช้ Pre-trained Transformers เช่น BERT, GPT-2 ใน TensorFlow TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การทำงานกับ Generative Adversarial Networks (GANs) TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การสร้าง Discriminator และ Generator ใน GAN TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การสร้าง Conditional GAN (cGAN) TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การสร้าง Variational Autoencoders (VAEs) TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การทำงานกับ Self-Supervised Learning TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การประยุกต์ใช้ Reinforcement Learning ด้วย TensorFlow TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การใช้ Proximal Policy Optimization (PPO) TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การใช้ Deep Q-Learning (DQN) TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การสร้างและฝึกโมเดล Deep Reinforcement Learning TensorFlow การเรียนรู้เชิงลึกขั้นสูง - การใช้ TensorFlow Lite เพื่อ Deploy โมเดลบน Mobile พื้นฐาน Keras - Keras คืออะไร พื้นฐาน Keras - ความแตกต่างระหว่าง Keras และ TensorFlow พื้นฐาน Keras - การติดตั้ง Keras ผ่าน TensorFlow พื้นฐาน Keras - Keras API คืออะไร พื้นฐาน Keras - การใช้ Keras กับ TensorFlow พื้นฐาน Keras - การใช้ Keras บน Google Colab พื้นฐาน Keras - ความเข้าใจเกี่ยวกับ Sequential API ใน Keras พื้นฐาน Keras - การใช้ Functional API ใน Keras พื้นฐาน Keras - การใช้ Model Subclassing ใน Keras พื้นฐาน Keras - การใช้ Input() ในการสร้าง Input Layer การสร้างโมเดลพื้นฐานใน Keras - การสร้างโมเดล Sequential ด้วย Keras การสร้างโมเดลพื้นฐานใน Keras - การเพิ่มเลเยอร์ในโมเดลด้วย model.add() การสร้างโมเดลพื้นฐานใน Keras - การสร้างโมเดลด้วย Functional API การสร้างโมเดลพื้นฐานใน Keras - การเชื่อมโยงเลเยอร์หลายทางด้วย Functional API การสร้างโมเดลพื้นฐานใน Keras - การสร้างโมเดลแบบมีหลายอินพุตและหลายเอาต์พุต การสร้างโมเดลพื้นฐานใน Keras - การใช้เลเยอร์ Dense ใน Keras การสร้างโมเดลพื้นฐานใน Keras - การใช้เลเยอร์ Activation เพื่อเพิ่มฟังก์ชันการกระตุ้น การสร้างโมเดลพื้นฐานใน Keras - การใช้เลเยอร์ Dropout เพื่อป้องกันการ Overfitting การสร้างโมเดลพื้นฐานใน Keras - การใช้เลเยอร์ BatchNormalization เพื่อเร่งความเร็วในการฝึกโมเดล การสร้างโมเดลพื้นฐานใน Keras - การใช้เลเยอร์ Flatten เพื่อทำให้ Tensor แบนราบ Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การใช้ model.compile() เพื่อเตรียมโมเดลสำหรับการฝึก Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การเลือกใช้ Optimizers เช่น SGD, Adam, RMSprop Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การใช้ Loss Functions เช่น MeanSquaredError, CategoricalCrossentropy Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การเพิ่ม Metrics ในการประเมินโมเดล เช่น Accuracy Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การใช้ Custom Loss Function Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การสร้าง Custom Metric Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การใช้ Custom Optimizer Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การทำงานกับ Learning Rate Scheduling Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การใช้ Early Stopping เพื่อป้องกันการ Overfitting Keras การทำงานกับ Optimizers, Loss Functions, และ Metrics - การใช้ ReduceLROnPlateau เพื่อลดค่า Learning Rate อัตโนมัติ การฝึกโมเดลใน Keras - การฝึกโมเดลด้วย model.fit() การฝึกโมเดลใน Keras - การฝึกโมเดลด้วย Mini-batch Gradient Descent การฝึกโมเดลใน Keras - การประเมินผลโมเดลด้วย model.evaluate() การฝึกโมเดลใน Keras - การทำนายผลลัพธ์ด้วย model.predict() การฝึกโมเดลใน Keras - การใช้ Validation Data ในการฝึกโมเดล การฝึกโมเดลใน Keras - การปรับแต่งจำนวน Epochs และ Batch Size การฝึกโมเดลใน Keras - การทำ Cross-Validation ใน Keras การฝึกโมเดลใน Keras - การใช้ fit_generator() สำหรับการฝึกข้อมูลขนาดใหญ่ การฝึกโมเดลใน Keras - การใช้ Callbacks ใน Keras การฝึกโมเดลใน Keras - การเก็บข้อมูลการฝึกด้วย History Object การบันทึกและโหลดโมเดลใน Keras - การบันทึกโมเดลด้วย model.save() การบันทึกและโหลดโมเดลใน Keras - การบันทึกโมเดลในรูปแบบ HDF5 การบันทึกและโหลดโมเดลใน Keras - การบันทึกโมเดลในรูปแบบ SavedModel (TensorFlow) การบันทึกและโหลดโมเดลใน Keras - การโหลดโมเดลด้วย load_model() การบันทึกและโหลดโมเดลใน Keras - การบันทึกเฉพาะน้ำหนักโมเดลด้วย model.save_weights() การบันทึกและโหลดโมเดลใน Keras - การโหลดน้ำหนักโมเดลด้วย model.load_weights() การบันทึกและโหลดโมเดลใน Keras - การใช้ Checkpoint เพื่อบันทึกโมเดลระหว่างการฝึก การบันทึกและโหลดโมเดลใน Keras - การบันทึกโมเดลแบบ Sequential และ Functional API การบันทึกและโหลดโมเดลใน Keras - การทำการบันทึกโมเดลหลายเวอร์ชันด้วย Checkpoints การบันทึกและโหลดโมเดลใน Keras - การบันทึกโมเดลที่ดีที่สุดด้วย EarlyStopping และ Checkpoints การทำงานกับข้อมูลใน Keras - การโหลดข้อมูลจากไฟล์ CSV ด้วย Keras การทำงานกับข้อมูลใน Keras - การใช้ ImageDataGenerator สำหรับการโหลดและแปลงข้อมูลภาพ การทำงานกับข้อมูลใน Keras - การทำ Image Augmentation ด้วย ImageDataGenerator การทำงานกับข้อมูลใน Keras - การโหลดข้อมูลจาก tf.data.Dataset การทำงานกับข้อมูลใน Keras - การทำงานกับ Sequence Data ด้วย TimeseriesGenerator การทำงานกับข้อมูลใน Keras - การใช้ pad_sequences เพื่อจัดการกับข้อมูลที่ไม่สมดุล การทำงานกับข้อมูลใน Keras - การทำ Normalization ของข้อมูลด้วย StandardScaler การทำงานกับข้อมูลใน Keras - การทำ One-Hot Encoding ของข้อมูลที่เป็นหมวดหมู่ การทำงานกับข้อมูลใน Keras - การแยกข้อมูลเป็นชุดการฝึกและชุดการทดสอบ การทำงานกับข้อมูลใน Keras - การโหลดข้อมูล MNIST ใน Keras Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การสร้างเลเยอร์ Convolution ด้วย Conv2D Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การใช้เลเยอร์ MaxPooling และ AveragePooling Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การสร้างโมเดล CNN สำหรับการรู้จำภาพ Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การใช้เลเยอร์ GlobalMaxPooling และ GlobalAveragePooling Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การใช้เลเยอร์ Dropout ร่วมกับ CNN เพื่อป้องกัน Overfitting Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การเพิ่ม BatchNormalization ใน CNN เพื่อเร่งความเร็วการฝึก Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การใช้ Padding กับเลเยอร์ Convolution Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การใช้ Dilated Convolution ใน Keras Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การทำ Fine-Tuning โมเดล CNN Keras การสร้างโมเดล Convolutional Neural Networks (CNN) - การใช้ Transfer Learning ร่วมกับโมเดล CNN Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การสร้างเลเยอร์ Simple RNN Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การสร้างเลเยอร์ Long Short-Term Memory (LSTM) Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การสร้างเลเยอร์ Gated Recurrent Unit (GRU) Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การประยุกต์ใช้ RNN ในการทำนาย Time Series Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การสร้าง Text Generation ด้วย RNN Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การใช้ Bidirectional RNN ใน Keras Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การใช้ Attention Mechanism ใน RNN Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การทำ Sequence-to-Sequence Learning ด้วย RNN Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การจัดการกับ Sequence Padding ใน RNN Keras การสร้างโมเดล Recurrent Neural Networks (RNN) - การประยุกต์ใช้ RNN ในงาน NLP Keras การสร้างโมเดลการประมวลผลภาพ - การสร้างโมเดลการรู้จำภาพด้วย CNN Keras การสร้างโมเดลการประมวลผลภาพ - การใช้ Pre-trained Models เช่น VGG16, ResNet Keras การสร้างโมเดลการประมวลผลภาพ - การใช้ Transfer Learning ในงานการรู้จำภาพ Keras การสร้างโมเดลการประมวลผลภาพ - การใช้โมเดล MobileNet สำหรับการรู้จำภาพ Keras การสร้างโมเดลการประมวลผลภาพ - การทำการ Segment ภาพด้วย Fully Convolutional Networks (FCN) Keras การสร้างโมเดลการประมวลผลภาพ - การทำการ Segmentation ด้วย UNet Keras การสร้างโมเดลการประมวลผลภาพ - การทำการตรวจจับวัตถุด้วย YOLO (You Only Look Once) Keras การสร้างโมเดลการประมวลผลภาพ - การใช้โมเดล SSD (Single Shot Multibox Detector) Keras การสร้างโมเดลการประมวลผลภาพ - การทำ Image Captioning ด้วย CNN + RNN Keras การสร้างโมเดลการประมวลผลภาพ - การสร้างโมเดลการรู้จำใบหน้า Keras การทำงานกับ Natural Language Processing (NLP) - การใช้ Tokenizer ในการจัดการกับข้อความ Keras การทำงานกับ Natural Language Processing (NLP) - การสร้าง Word Embedding ด้วย Embedding Layer Keras การทำงานกับ Natural Language Processing (NLP) - การใช้ Pre-trained Word Embeddings เช่น GloVe Keras การทำงานกับ Natural Language Processing (NLP) - การทำงานกับ One-Hot Encoding ในงาน NLP Keras การทำงานกับ Natural Language Processing (NLP) - การสร้างโมเดลสำหรับ Sentiment Analysis Keras การทำงานกับ Natural Language Processing (NLP) - การสร้างโมเดลสำหรับการจำแนกข้อความ Keras การทำงานกับ Natural Language Processing (NLP) - การทำงานกับ Seq2Seq Models ในการแปลภาษา Keras การทำงานกับ Natural Language Processing (NLP) - การสร้างโมเดล Text Generation Keras การทำงานกับ Natural Language Processing (NLP) - การใช้ Attention Mechanism ในงาน NLP Keras การทำงานกับ Natural Language Processing (NLP) - การประยุกต์ใช้ BERT และ GPT-2 ใน Keras

Machine Learning

หมายเหตุ: บทความนี้เป็นส่วนหนึ่งของ "บทความชุด Article with Machine Translation" ซึ่งเป็นการแปลบทความจากต้นฉบับภาษาต่างประเทศด้วย Machine translation ดังนั้นจึงมีข้อผิดพลาดอยู่หลายจุด ขอให้ผู้อ่านโปรดใช้วิจารณญาณในการอ่าน ทาง EPT ไม่ขอรับประกันว่าข้อมูลที่ท่านได้อ่านเป็นข้อมูลที่ถูกต้อง และไม่ขอรับผิดชอบความเสียหายใด ๆ ที่เกิดต่อผู้อ่านทั้งทางร่างกาย จิตใจ ทรัพย์สิน ฯลฯ นะครับ

     Machine Learning เป็นสาขาหนึ่งของปัญญาประดิษฐ์ที่พัฒนามาจากการ ศึกษาการรู้การจำ รูปแบบ Pattern Recognition เกี่ยวข้องกับการศึกษาและการสร้างอัลกอริทึมที่สามารถ เรียนรู้ข้อมูลและทำนายข้อมูลได้ อัลกอริทึมนั้นจะทำงานโดยอาศัยโมเดล ที่สร้าง มาจากชุดข้อมูลตัวอย่างขาเข้า (Training Data )เพื่อการทำนาย (Predict)หรือตัดสินใจในภายหลังแทนที่จะ ทำงานตามลำดับของคำสั่งโปรแกรมคอมพิวเตอร์

กล่าวคือ ปกติแล้ว เราเขียนโปรแกรม Computer ก็คือ การสั่งให้ Computer ทำงานตามคำสั่งที่ผู้เขียนโปรแกรมสั่งให้ทำแบบเฉพาะเจาะจงแต่ใน Machine Learning นี้เราฝันถึง Computer ที่มีความฉลาดมากยิ่งขึ้นซึ่งสามารถทำงานได้เองโดยไม่ต้องมีผู้สั่งมันทำแบบเฉพาะเจาะจง แต่จำเป็นต้องมีการสอนมันมันให้รู้ว่านี่คือ อินพุท นี้คือ เอาพุท ให้ Computer ไปหาวิธีตรงกลางเอาเอง

       Machine Learning มีความเกี่ยวข้องอย่างมากกับวิชาสถิติ เนื่องจากทั้ง 2 สาขา ศึกษาการวิเคราะห์ข้อมูลเพื่อการทำนายเช่นกัน นอกจากนี้ยังมีความสัมพันธ์ กับสาขาการหาค่าเหมาะที่สุดในทางคณิตศาสตร์ (Mathematical Optimization)ในแง่ของวิธีการ ทฤษฎีและการ ประยุกต์ใช้ Machine Learning สามารถนำไปประยุกต์ใช้งานได้หลากหลาย ไม่ว่าจะเป็นการกรองอีเมล์ขยะ การรู้จำตัวอักษร เครื่องมือค้นหา และคอมพิวเตอร์วิทัศน์

 

 

ประเภทของปัญหาและงาน

การเรียนรู้ของเครื่อง สามารถแบ่งได้เป็น 3 ประเภท ตามประเภทของ"ข้อมูลฝึก" (Training Data )หรือ "ข้อมูลขาเข้า" ได้ดังนี้

  • การเรียนรู้แบบมีผู้สอน (supervised learning) ข้อมูลตัวอย่างและผลลัพธ์ที่ "ผู้สอน" ต้องการ ถูกป้อนเข้าสู่คอมพิวเตอร์ เป้าหมาย คือ การสร้างกฎ ทั่วไปที่สามารถเชื่อมโยงข้อมูลขาเข้ากับขาออกได้

  • การเรียนรู้แบบไม่มีผู้สอน (unsupervised learning)  ไม่มีการทำฉลากใดๆ และให้คอมพิวเตอร์หาโครงสร้างของข้อมูลขาเข้าเอง

  • การเรียนรู้แบบเสริมกำลัง (reinforcement learning)  คอมพิวเตอร์มี ปฏิสัมพันธ์กับสิ่งแวดล้อมที่เปลี่ยนไปตลอดเวลาโดย คอมพิวเตอร์จะต้อง ทำงานบางอย่าง (เช่น ขับรถ) โดยที่ไม่มี"ผู้สอน"คอย บอกอย่างจริงจัง ว่าวิธีการที่ทำอยู่นั้นเข้าใกล้เป้าหมายแล้วหรือไม่ ตัวอย่าง เช่น การเรียนรู้ เพื่อเล่นเกม

  • การเรียนรู้แบบกึ่งมีผู้สอน (semi supervised Learning) "ผู้สอน"จะไม่สอน อย่างสมบูรณ์ คือ บางข้อมูลในเซ็ตการสอนนั้นขาดข้อมูลขาออก

  • ทรานดักชัน (transduction)  เป็นกรณีพิเศษของการเรียนรู้แบบกึ่งมีผู้สอน คือ ใช้ชุดตัวอย่างที่มีทั้งฉลากและไม่มีฉลากในการเรียนรู้ แต่จุดประสงค์ ไม่ใช่การสร้างแบบจำลอง แต่เป็นการใส่ฉลากให้กับตัวอย่างที่ไม่มีฉลากที่ ใช้ในการฝึกสอน เนื่องจากการเรียนรู้แบบนี้ไม่มีแบบจำลองจึงไม่สามารถ นำไปใช้กับข้อมูลชุดใหม่ได้โดยตรง

  • การเรียนวิธีการเรียน (learning to learn, meta-learning)  เป็นวิธีที่จะเรียน วิธีการเรียนรู้ของตนเอง โดยปรับปรุง inductive bias ที่เป็นข้อสมมติฐานที่ อัลกอริทึมใช้ในการเรียนรู้จากประสบการณ์ที่ผ่านมา

 นอกจากนี้ Machine Learning ยังสามารถแบ่งประเภทของ"งาน"ได้ตาม "ข้อมูลขา ออก" จาก ระบบที่เครื่องจักรได้เรียนรู้แล้ว เป็นหลายประเภท ดังนี้

  • Machine Learning ที่ใช้ในการแบ่งประเภทข้อมูล (classification) ข้อมูลขาเข้าถูกแบ่งออกเป็น หลายประเภทหรือ class และผู้เรียนจะต้องสร้างโมเดลที่สามารถกำหนด ประเภทให้กับข้อมูลใหม่ที่ไม่เคยเห็นมาก่อนได้ โดยปกติแล้วจะทำโดยวิธี การเรียนรู้แบบมีผู้สอน ได้แก่ การกรองอีเมล์ขยะ โดยอีเมล์จะถูกแบ่งเป็น ประเภท"ขยะ"และ"ไม่ใช่ขยะ"

  • การวิเคราะห์การถดถอย (regression) ใช้หลักการเดียวกับการแบ่งประเภท ข้อมูล แต่ข้อมูลขาออกเป็นลักษณะต่อเนื่องมากกว่าเป็นประเภทแยกกัน

  • การแบ่งกลุ่มข้อมูล (clustering)  เป้าหมาย คือ การแบ่งข้อมูลขาเข้าเป็น กลุ่มๆ โดยอัลกอริทึมจะไม่ทราบกลุ่มดังกล่าวล่วงหน้า (ไม่เหมือนกับการ แบ่งประเภทข้อมูล) โดยปกติแล้วมักเป็นการเรียนรู้แบบไม่มีผู้สอน

  • การประเมินความหนาแน่น (density estimation)  เป็นการหาการกระจาย ของข้อมูลในมิติบางมิติ

  • การลดขนาดของมิติ (dimensionality reduction)  เป็นการเชื่อมโยงข้อมูล หลายมิติไปสู่มิติที่ต่ำกว่า

ประวัติและความสัมพันธ์กับสาขาอื่น

      ศาสตร์ด้าน Machine Learning เติบโตไปพร้อมๆกับปัญญาประดิษฐ์ ในความเป็นจริง Machine Learning มีมาตั้งแต่ยุคแรกๆของปัญญาประดิษฐ์แล้ว นักวิทยาศาสตร์หลายคนสนใจการสร้างเครื่องจักรที่สามารถเรียนรู้จากข้อมูลได้ จึงเริ่มทดลองวิธีการหลายๆอย่าง ที่ชัดสุด คือ โครงข่ายประสาทเทียม เวลาต่อมา ได้มีการคิดค้นโมเดลเชิงเส้นทั่วไปจากหลักการทางสถิติศาสตร์ ไปจนถึงการพัฒนา วิธีการให้เหตุผลตามหลักความน่าจะเป็น โดยเฉพาะในการประยุกต์ด้านการวินิจฉัย โรคอัตโนมัติ อย่างไรก็ตาม นักวิจัยในสายปัญญาประดิษฐ์ยุคต่อมาเริ่มหันมาให้ ความสำคัญกับตรรกศาสตร์และใช้วิธีการทางการแทนความรู้มากขึ้น จนทำให้ ปัญญาประดิษฐ์เริ่มแยกตัวออกจากศาสตร์ Machine Learning จากนั้นเริ่มมี การใช้หลักการความน่าจะเป็นมากขึ้นในการดึงและการแทนข้อมูล ต่อมาระบบ ผู้เชี่ยวชาญเริ่มโดดเด่นในสายของปัญญาประดิษฐ์จนหมดยุคของการใช้หลักสถิติ มีงานวิจัยด้านการเรียนรู้เชิงสัญลักษณ์และบนพื้นฐานของฐานความรู้ออกมา

เรื่อยๆจนศาสตร์ด้านการโปรแกรมตรรกะเชิงอุปนัยได้ถือกำเนิดขึ้นมา แต่งานด้าน สถิติก็ยังถือว่ามีบทบาทมากนอกสาขาของปัญญาประดิษฐ์ เช่น การรู้การจำแบบ และการค้นคืนสารสนเทศ นักวิจัยสายปัญญาประดิษฐ์และนักวิทยาศาสตร์ คอมพิวเตอร์ได้ทิ้งงานวิจัยด้านโครงข่ายประสาทเทียมไปในเวลาเดียวกัน แต่ก็ยังมี นักคณิตศาสตร์บางคนที่ยังพัฒนาโครงข่ายประสาทเทียมต่อไป จนกระทั่งได้ค้นพบ หลักการการแพร่คืนย้อนกลับของโครงข่ายประสาทเทียมที่ประสบความสำเร็จ มากมายในเวลาต่อมา

      Machine Learning เน้นเรื่องการพยากรณ์ข้อมูลจากคุณสมบัติที่"รู้"แล้วที่ ได้เรียนรู้มาจากข้อมูลชุดสอน

      Machine Learning ยังมีความคล้ายคลึงกับการหาค่าเหมาะที่สุด (optimization) นั่นคือ การเรียนรู้หลายอย่างมักจะถูกจัดให้อยู่ในรูปแบบของการ หาค่าที่น้อยที่สุดของฟังก์ชันการสูญเสียบางอย่างจากข้อมูลชุดสอน ฟังก์ชันการ สูญเสีย หมายถึง ความแตกต่างระหว่างสิ่งที่พยากรณ์ไว้กับสิ่งที่เป็นจริง

วิธีการเรียนรู้

  • การเรียนรู้ต้นไม้ตัดสินใจ (decision tree learning)

ใช้ต้นไม้ตัดสินใจในการสร้างโมเดลที่พยากรณ์ได้ ซึ่งจะเชื่อมโยงข้อมูลสังเกต การณ์เข้ากับข้อมูลปลายทาง

  • กฎความสัมพันธ์ (association rule learning)

เป็นวิธีการหาความสัมพันธ์ที่น่าสนใจจากตัวแปรในฐานข้อมูลขนาดใหญ่

  • โครงข่ายประสาทเทียม (artificial neural networks)

เป็นอัลกอริทึมที่ได้แรงบันดาลใจมาจากโครงสร้างและการทำงานของเซลล์ประสาทในสมอง การคำนวณของโครงข่ายประสาทเทียมถูกสร้างเป็นโครงสร้างของการ เชื่อมต่อของประสาทเทียมแต่ละตัว ประมวลผลข้อมูลโดยหลักการการเชื่อมต่อ โครงข่ายสมัยใหม่เป็นเครื่องวิเคราะห์ทางสถิติที่ไม่เป็นเชิงเส้น มักใช้ในการจำลอง ความสัมพันธ์ที่ซับซ้อนระหว่างข้อมูลขาเข้าและขาออก เพื่อหารูปแบบจากข้อมูล หรือเพื่อหาโครงสร้างทางสถิติระหว่างตัวแปรที่สำรวจ

  • การโปรแกรมตรรกะเชิงอุปนัย (inductive logic programming)

เป็นวิธีการเรียนรู้จากกฎโดยใช้การโปรแกรมตรรกะ เมื่อมีข้อมูลเบื้องหลังและกลุ่ม ของตัวอย่างที่เป็นฐานข้อมูลตรรกะแล้ว โปรแกรมจะหาโปรแกรมตรรกะที่ครอบ คลุมตัวอย่างบวกแต่ไม่ครอบคลุมตัวอย่างลบ

  • ซัพพอร์ตเวกเตอร์แมชชีน (support vector machines)

เป็นหนึ่งในวิธีการเรียนรู้แบบมีผู้สอน ใช้เพื่อการแบ่งประเภทข้อมูลและการ วิเคราะห์การถดถอย เมื่อมีข้อมูลฝึกมาให้และแต่ละข้อมูลถูกจัดอยู่ในประเภทใด ประเภทหนึ่งจากสองประเภท ซัพพอร์ตเวกเตอร์แมชชีนจะสร้างแบบจำลองที่ สามารถพยากรณ์ได้ว่าตัวอย่างใหม่นี้จะตกอยู่ในกลุ่มใด

  • การแบ่งกลุ่มข้อมูล (clustering)

เป็นการจัดกลุ่มของข้อมูลสำรวจให้ตกอยู่ในเซ็ตย่อย (เรียกว่า กลุ่ม หรือ cluster) โดยที่ข้อมูลที่อยู่ในกลุ่มเดียวกันจะมีความคล้ายกันตามเกณฑ์ที่ตั้งเอาไว้ ในข้อมูล ที่อยู่คนละกลุ่มจะมีความต่างกัน เทคนิคการแบ่งกลุ่มข้อมูลแต่ละเทคนิคก็มี สมมติฐานของโครงสร้างข้อมูลไม่เหมือนกัน โดยปกติแล้วมักจะมีการนิยาม การวัด ค่าความเหมือน การเกาะกลุ่มภายในและการแยกกันระหว่างกลุ่มที่แตกต่างกัน การแบ่งกลุ่มข้อมูลเป็นวิธีการเรียนรู้แบบไม่มีผู้สอนและเป็นวิธีที่ใช้กันทั่วไปใน การวิเคราะห์ข้อมูลทางสถิติ

  • เครือข่ายแบบเบย์ (Bayesian networks)

เป็นโมเดลความน่าจะเป็นเชิงกราฟที่แทนกลุ่มของตัวแปรสุ่มและความเป็นอิสระ แบบมีเงื่อนไขด้วยกราฟอวัฏจักรระบุทิศทาง เช่น สามารถใช้แทนความสัมพันธ์เชิง ความน่าจะเป็นระหว่างอาการแสดงกับโรคได้ เมื่อมีอาการแสดง เครือข่ายจะ คำนวณความน่าจะเป็นที่จะเป็นโรคแต่ละโรค มีหลายอัลกอริทึมที่สามารถอนุมาน และเรียนรู้ได้อย่างมีประสิทธิภาพ

  • การเรียนรู้แบบเสริมกำลัง (reinforcement learning)

พิจารณาว่า เอเยนต์ ควรจะมีการกระทำใดในสิ่งแวดล้อม เพื่อที่จะได้รางวัลสูงสุด อัลกอริทึมของการเรียนรู้แบบเสริมกำลังนี้พยายามจะหานโยบายที่เชื่อมโยง สถานะของโลกเข้ากับการกระทำที่เอเยนต์ควรจะทำในสถานะนั้นๆ การเรียนรู้นี้มี ความแตกต่างไปจากการเรียนรู้แบบมีผู้สอนตรงที่ว่า คอมพิวเตอร์จะไม่รู้เลยว่า อะไรถูกอะไรผิด คือ ไม่มีการบอกอย่างชัดเจนว่าการกระทำใดยังไม่ดี

  • การเรียนรู้ด้วยการแทน (representation learning)

การเรียนรู้บางอย่างโดยเฉพาะการเรียนรู้แบบไม่มีผู้สอนนั้นพยายามจะค้นหาการ แทนข้อมูลขาเข้าที่ดีขึ้นเมื่อมีชุดข้อมูลฝึก ได้แก่ การวิเคราะห์องค์ประกอบหลัก และการแบ่งกลุ่มข้อมูล อัลกอริทึมการเรียนรู้ด้วยการแทนมักจะเปลี่ยนข้อมูลไป ในรูปแบบที่มีประโยชน์แต่ยังคงรักษาสารสนเทศของข้อมูลเอาไว้ มักใช้ใน กระบวนการเตรียมข้อมูลก่อนจะแบ่งประเภทข้อมูลหรือพยากรณ์ ตัวอย่างอื่นๆ เช่น การเรียนรู้เชิงลึก

  • การเรียนรู้ด้วยความคล้าย (similarity and metric learning)

เครื่องจะมีตัวอย่างของคู่ที่ถูกมองว่าคล้ายมากและคู่ที่ถูกมองว่าคล้ายน้อย เครื่องจะต้องหาฟังก์ชันความคล้ายออกมาที่สามารถทำนายได้ว่าวัตถุใหม่นั้นมี ความคล้ายมากน้อยเพียงใด มักใช้ในระบบแนะนำ (recommendation system)

  • ขั้นตอนวิธีเชิงพันธุกรรม (genetic algorithms)

เป็นการค้นหาแบบฮิวริสติกที่เลียนแบบกระบวนการคัดเลือกตามธรรมชาติในช่วง วิวัฒนาการของสิ่งมีชีวิต โดยใช้เทคนิคการกลายพันธุ์ของยีนและการไขว้เปลี่ยน ของโครโมโซมในการหาประชากรที่น่าจะอยู่รอดเพื่อพาไปสู่คำตอบของปัญหาได้ เทคนิคทาง Machine Learning ช่วยปรับปรุงประสิทธิภาพของขั้นตอนวิธีเชิง พันธุกรรมและขั้นตอนวิธีเชิงวิวัฒนาการด้วยเช่นกัน

การประยุกต์

การเรียนรู้ของเครื่องสามารถประยุกต์ใช้งานได้หลากหลาย เช่น

  • เว็บไซต์ปรับรูปแบบเองได้ (Adaptive website)
  • การคำนวณเชิงอารมณ์ (affective computing)
  • ชีวสารสนเทศศาสตร์ (bioinformatics)
  • การเชื่อมต่อระหว่างสมองกับคอมพิวเตอร์ (brain–computer interface)
  • เคมีสารสนเทศศาสตร์ (chemoinformatics)
  • การจัดประเภทลำดับดีเอ็นเอ
  • คอมพิวเตอร์วิทัศน์ (computer vision)
  • การตรวจจับการฉ้อโกงบัตรเครดิต (credit card fraud)
  • การเล่นเกมกลยุทธ์
  • การค้นคืนสารสนเทศ (information retrieval)
  • การตรวจสอบการฉ้อโกงทางอินเทอร์เน็ต
  • การรับรู้ของเครื่อง (Machine perception)
  • การวินิจฉัยทางการแพทย์ (medical diagnosis)
  • การประมวลผลภาษาธรรมชาติ (natural language processing)
  • การหาค่าเหมาะที่สุด (optimization)
  • ระบบแนะนำ (recommender systems)
  • ระบบเคลื่อนไหวของหุ่นยนต์
  • เสิร์ชเอนจิน (search engines)
  • วิศวกรรมซอฟต์แวร์ (software engineering)
  • การรู้การจำเสียงพูด (speech recognition)

 

References :

https://en.wikipedia.org/wiki/Machine_learning

https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%A3%E0%B8%B5%E0%B8%A2%E0%B8%99%E0%B8%A3%E0%B8%B9%E0%B9%89%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E0%B8%84%E0%B8%A3%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%87


Tag ที่น่าสนใจ: machine_learning pattern_recognition supervised_learning unsupervised_learning reinforcement_learning classification regression clustering density_estimation dimensionality_reduction artificial_intelligence training_data data_prediction statistical_analysis


บทความนี้อาจจะมีที่ผิด กรุณาตรวจสอบก่อนใช้

หากมีข้อผิดพลาด/ต้องการพูดคุยเพิ่มเติมเกี่ยวกับบทความนี้ กรุณาแจ้งที่ http://m.me/Expert.Programming.Tutor

ไม่อยากอ่าน Tutorial อยากมาเรียนเลยทำอย่างไร?

สมัครเรียน ONLINE ได้ทันทีที่ https://elearn.expert-programming-tutor.com

หรือติดต่อ

085-350-7540 (DTAC)
084-88-00-255 (AIS)
026-111-618
หรือทาง EMAIL: NTPRINTF@GMAIL.COM

แผนที่ ที่ตั้งของอาคารของเรา

แผนผังการเรียนเขียนโปรแกรม

Link อื่นๆ

Allow sites to save and read cookie data.
Cookies are small pieces of data created by sites you visit. They make your online experience easier by saving browsing information. We use cookies to improve your experience on our website. By browsing this website, you agree to our use of cookies.

Copyright (c) 2013 expert-programming-tutor.com. All rights reserved. | 085-350-7540 | 084-88-00-255 | ntprintf@gmail.com

ติดต่อเราได้ที่

085-350-7540 (DTAC)
084-88-00-255 (AIS)
026-111-618
หรือทาง EMAIL: NTPRINTF@GMAIL.COM
แผนที่ ที่ตั้งของอาคารของเรา